Protecting PhotoMOS Relays With Varistors

July 14, 2011
By Anonymous

PhotoMOS Relays

Panasonic offers a wide range of PhotoMOS Relays for use in telecommunication, measurement, security devices, and industrial control. The PhotoMOS relay differs from the conventional electromechanical relay, but it also distinguishes itself from other switching solutions that utilize optocouplers and semiconductors. The construction of the PhotoMOS relay is illustrated by Figure 1. The input pins are connected to a light emitting diode. This LED is located on the upper part of the relay. If a current flows through it, it starts emitting infrared light. Below the LED there is an array of solar cells integrated into an optoelectronic device, located at least 0.4mm from the LED.

Figure 1: PhotoMOS Relay Internal Construction

      Figure 1: PhotoMOS Relay Internal Construction

The Light Emitter And Detector

The light emitter and detector are molded in a translucent resin that allows light to pass, thus providing a dielectric barrier between the input and output side. The optoelectronic device serves as control circuit for switching two power MOSFETs, and therefore the load circuit. These DMOS transistors are source coupled, thus providing bidirectional switching capabilities. The DMOSFET output transistor significantly differs from standard MOSFETs used in integrated circuits. It has a vertical channel structure, and the source and drain are placed opposite the wafer, as shown in Figure 2. As a result, there is more space for the source, the drain region is available, and the current rating can be increased.

Figure 2: DMOSFET Structure

                  Figure 2: DMOSFET Structure

Protection From Voltage Spikes

Even though the DMOSFET features a greater current rating compared to standard MOSFETs, both types are susceptible to voltage spikes. These spikes can be caused by lightning, or by switching inductive loads. In order to protect the PhotoMOS from such overvoltage, adding a protective device to the circuit may be necessary. One possible method is to utilize a metal oxide varistor (MOV). Varistors (Variable Resistors) are voltage dependent resistors with a symmetrical V-I characteristic curve (Figure 3), whose resistance decreases with increasing voltage. Connected in parallel with an electronic device or circuit, they form a low-resistance shunt when voltage increases, thereby preventing a further rise of the overvoltage.

Figure 3: V-I Characteristic of Varistor

           Figure 3: V-I Characteristic of Varistor

Switching Off Inductive Loads. When switching off inductive loads, high voltages may be produced that harm the inductor itself in particular the switch. To reduce this voltage peak, a varistor can be connected in parallel to the inductive load, or the switch. At first, the varistor’s operating voltage will be determined according to the following example:

Figure 4: Switching Off Inductive Loads

              Figure 4: Switching Off Inductive Loads

The operating voltage is 24 VDC. Assuming a 10% tolerance, the varistor’s DC operating voltage must be higher than 26.4 VDC. Since the current through the inductor cannot change abruptly, the load current of 1.2 A will flow through the varistor after switching off. Because of the varistor’s V-I characteristics, a certain voltage drop occurs across the varistor (e.g. 60 V). Based on this voltage drop, the dynamic resistance of the varistor can be calculated: PhotoMOS: Varistor's Dynamic Resistance CalculationTaking this resistance and the load resistance into account, the time constant τ for the duration of the protection can be determined: PhotoMOS: Varistor's Protection DurationAfter these parameters have been determined, the maximum varistor ratings have to be checked. With the time duration, the maximum allowable current is determined from the derating curve, and is compared to the 1.2 A from the application. The maximum energy absorption of the varistor must be higher than the energy from the inductor: PhotoMOS: Varistor Energy AbsorptionMoreover, the protection level of the varistor must satisfy the maximum voltage ratings of the switch, and of the inductor in order to offer adequate protection.

Surge Voltage Protection. Another typical application of a varistor is to protect the switch and load against surge voltages that may result from lightning, or electrostatic discharge. First, select the varistor’s operating voltage as described before. The voltage class of the varistor must be higher than the maximum load voltage.

Figure 4: Surge Voltage Protection

                Figure 4: Surge Voltage Protection

Next, the surge current is determined. For the first iteration, the surge current is the peak value of overvoltage divided by the internal impedance of the voltage source: PhotoMOS: Surge CurrentWith this surge current, the varistor voltage can be determined from the V-I characteristics (for example, 320 V for a varistor with voltage class of 95 V). Pay attention to the tolerance of the varistor and consider the lowest voltage drop possible. In the next iteration, the surge current is determined again by taking the peak value for the surge voltage, reducing it by the voltage drop across the protection element, and dividing the result by the internal impedance of the surge voltage source: PhotoMOS: Varistor VoltageAfter this, the varistor’s derating curve has to be considered by using maximum current and pulse duration. The maximum permissible power dissipation is checked by the energy of the pulse, its duration, and the number of repetitions (here one per 60 sec): PhotoMOS: Varistor Derating CurveIf all of these criteria are met and if the protection level is sufficient for the electrical circuit, the optimal varistor is determined. Afterwards, the application can be tested in order to verify whether the protection level is sufficient. 

Choosing A PhotoMOS Relay

Protecting semiconductor switches is essential. Therefore, a certain margin must be considered between the load voltage and the maximum voltage of the switch. When choosing a PhotoMOS relay, consider the load current first, then add a maximum margin to the load voltage to find the PhotoMOS relay most suitable for the project.